- Setup
- Write a Logging Configuration File
« Read the Logging Config to a Logger
e Using the Logger
« Lets Read Some Logs
- Making the Logger Dynamic
« Listen for New Configurations
- Updating Active Loggers
« Reading the Output
« Conclusion
- Drawbacks
- Benefits
« Details and Sample Code

Software visibility is vital to anyone running complex or large scale applications,
and much of that visibility comes from software logs. Python provides a powerful
implementation of a logging framework in its standard library. To construct what it
provides into a configurable logger, we need to do a few things first.

Setup

To properly setup a customized logger instance, we need to create a configuration
file and read from it.

Write a Logging Configuration File

Since we want to keep configurations separate from code, lets put these away from
our library:

project
|— main.py
F 1ib

https://docs.python.org/3/library/logging.html
https://github.com/python/cpython/blob/2d2af320d94afc6561e8f8adf174c9d3fd9065bc/Lib/logging/__init__.py%23L1392

| F—— __init__.py
| — color_formatter.py
| L— logger.py

L+ logger_config
L— info.conf

We can build the configuration like so:

[loggers]
keys=root

[handlexrs]
keys=console

[formatters]
keys=default

[formatter_default]

class: logging.ColorFormatter

format: '$YELLOWY%(asctime)s $RESET- $MAGENTA%(module)s.%(funcName)s
$RESET- $GREENY% (processName)s $RESET- $COLOR%(levelname)s $RESET- %
(message)s'

[handler_console]

class: logging.StreamHandler
formatter: default

level: INFO

[logger_xroot]
level: INFO
handlers: console

The first three entries tell Python the names of the logger, handler, and formatter
we want it to use.

To support colors in our logs, we define a custom ColorFormatter class that
replaces the log format string with the proper escape codes for readability.

https://docs.python.org/3/library/logging.config.html%23configuration-file-format
https://github.com/ReagentX/LoggingExample/blob/main/lib/color_formatter.py

This file defines a console hander that we will stream the logs into, but there are
other options.

Read the Logging Config to a Logger

In 1ib/logger.py, when we construct the logger?!, we call
loggingConfig(path), where path is the path to the configuration file we want
to use?. This function reads in the configuration file and return an instance of the
logger it describes:

import logging

import logging.config

from .color_formatter import ColorFormatter

def build_logger() -> logging.Logger:
logging.ColorFormatter = ColorFormatter # type: ignore
logging.config.fileConfig('logger_config/info.conf"')

logger = logging.getLogger() # Root logger
return logger

LOGGER = build_loggex ()

By creating an instance of the logger in this file, we can import that reference
instead of constructing a new logger instance when we need it.

Using the Logger

In main.py, using the logger is simple:

import time

from 1lib.logger import LOGGER

https://docs.python.org/3/library/logging.handlers.html%23module-logging.handlers

while True:
time.sleep(2)
LOGGER.error('Oops, something weird happened.')
LOGGER.info('Hey, something happened."')
LOGGER.debug('Hey, something happened.')

This even works across processes3:

import time
from multiprocessing import Process

from lib.logger import LOGGER

def write_logs() -> None:
while True:
LOGGER.erroxr('Oops, something weird happened.')
LOGGER.info('Hey, something happened.')
LOGGER.debug('Got http code 200.')

processes = [Process(target=write_logs) for in range(4)]

proc_identifier = 0

for process in processes:
proc_identifier += 1
process.name = f'lLogging Process #{iproc_identifier}'
process.start()

write_logs()

Since each process spawns in its own interpreter, they each setup an instance of

LOGGER and they each log to the same place: the parent process’s standard output
and standard error.

Lets Read Some Logs

Let’s run this program through Logria, my logging CLI tool with logria -e
"python main.py':

file:///Applications/iA%20Writer.app/Contents/Resources/Templates/Sans.iatemplate/Contents/multiprocessing-changes-python-3-8/
https://github.com/ReagentX/Logria

2020-10-15 18:47:04,825 - main.write_logs - MainProcess - ERROR -
Something weird happened.

2020-10-15 18:47:04,825 - main.write_logs - MainProcess - INFO - A
normal thing happened.

2020-10-15 18:47:04,843 - main.write_logs - Logging Process #1 -
ERROR - Something weird happened.

2020-10-15 18:47:04,844 - main.write_logs - Logging Process #1 - INFO
- A normal thing happened.

2020-10-15 18:47:05,349 - main.write_logs - Logging Process #2 -
ERROR - Something weird happened.

2020-10-15 18:47:05,350 - main.write_logs - Logging Process #2 - INFO
- A normal thing happened.

2020-10-15 18:47:05,853 - main.write_logs - Logging Process #3 -
ERROR - Something weird happened.

2020-10-15 18:47:05,854 - main.write_logs - Logging Process #3 - INFO
- A normal thing happened.

2020-10-15 18:47:06,365 - main.write_logs - Logging Process #4 -
ERROR - Something weird happened.

2020-10-15 18:47:06,365 - main.write_logs - Logging Process #4 - INFO
- A normal thing happened.

[No filter applied
|

Since we initialize the logger with info.conf, we see logs at the INFO level and
above, as expected.

If our app is running and we want to change this level to expose more detailed logs,
the process needs to be restarted. While we can add gracefully exit logic and
handle this, it would be far simpler to update the logging configuration after
constructing it.

Making the Logger Dynamic

In order to adjust the detail level of logs on the fly, we need to make the logger
smarter.

Listen for New Configurations

Python provides a method called .1listen(port: int) inthe module

logging.config. This creates an optional ConfigStreamHandler instance that

listens on the given port for new logging configuration files and updates the
currently running configuration accordingly.

All we need to do is add logic to first validate whether a port is available, then
connect to it. We set limits here so that the program does not inadvertently create
too many unwanted connections.

The new logic enables the logging server when deployed to an environment, but
always enables debug logging when running locally.

import logging

import logging.config
import os

import socket

from .color_formatter import ColorFormatter

DEFAULT_FILES = %

'dev': 'logger_config/info.conf',
'test': 'logger_config/info.conf',
'prod': 'logger_config/error.conf',

def build_logger() -> logging.Logger:
Set the color prop so we can access it from the config
logging.ColoxrFormatter = ColorFormatter # type: ignozre

Read initial config file based on environment name, default to
debug
logging.config.fileConfig(

https://github.com/python/cpython/blob/2d2af320d94afc6561e8f8adf174c9d3fd9065bc/Lib/logging/config.py%23L812
https://github.com/python/cpython/blob/master/Lib/logging/config.py

DEFAULT_FILES.get(
os.environ.get('ENV', ''),
'logger_config/debug.conf'))

Create and start listener on an open port
port = 9001
logging_config_listener = None
while port < 9030:
try:
Check if the socket is in use
socket_validator = socket.socket(socket.AF_INET,
socket.SOCK_STREAM)
socket_validator.connect(('localhost', port))
socket_validator.close()
port += 1
continue
If the socket does not exist, Python raises this exception
and we know we can use it
except ConnectionRefusedError:
logging_config_listener = logging.config.listen(port)
logging_config_listener.start()
print(f'Setup logging server on port {port:')
if port == 9030:
print('Out of logging ports! Please increase limit!')
break
if logging_config_listener is None:
raise ValueError(
'"Unable to start logging server, all ports in use!')
logger = logging.getLogger() # Root logger
return logger

LOGGER = build_loggex()

This code will loop over ports until it receives a ConnectionRefusedError or until
the port range is exhausted. If it receives a ConnectionRefusedError, it means
there is an available port on which to construct the ConfigStreamHandler.

To connect to the port, we need to write a script to read the file, convert it to the
stream the ConfigStreamHandler

https://github.com/python/cpython/blob/2d2af320d94afc6561e8f8adf174c9d3fd9065bc/Lib/logging/config.py%23L843

Since the listening ConfigStreamHandler uses fileConfig() internally, we
must use fileConfig() and not dictConfig() when constructing the logger?.

Updating Active Loggers

Since our loggers are all in different processes, we need to send our logger
configurations to all their ports. We can use the same method as above to
determine what ports are in use and reverse the logic in update_log_levels.py:

import socket
import struct
import sys

with open(sys.argv[1], 'zb') as f:
data_to_send = f.read()

HOST 'localhost’
PORT = 9001 # Must be the same as the port in ‘lib/logger.py’
UPDATED_SERVERS = 0

Loop through all the ports on the server until we get one that does
not have a logging server
"29° comes from the limit in the while loop in the aforementioned
file, i.e. 9001..9030
for port_num in range(PORT, PORT + 29):
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
try:
s.connect ((HOST, port_num))
print(£'Connecting to logging server on port {port_numi...')
except ConnectionRefusedError:
break
print('Sending new config...')
s.send(struct.pack('>L', len(data_to_send)))
s.send(data_to_send)
UPDATED_SERVERS += 1
s.close()
if UPDATED_SERVERS > 0O:
print('Logging configuration updated!')
else:

https://github.com/python/cpython/blob/2d2af320d94afc6561e8f8adf174c9d3fd9065bc/Lib/logging/config.py%23L869

print('Unable to connect to any logging servers!')

We can add this file here:

project
F— main.py
F lib
| — __init__.py
| — color_formatter.py
| L— logger.py
L+ logger_config
— debug.conf
— info.conf

— error.conf
L— update_log_levels.py

Reading the Output

After running these it, we now see the logs, as we should:

2020-10-15 18:47:04,825 - main.write_logs
Something weird happened.

2020-10-15 18:47:04,825 - main.write_logs
normal thing happened.

2020-10-15 18:47:04,843 - main.write_logs
ERROR - Something weird happened.
2020-10-15 18:47:04,844 - main.write_logs
- A normal thing happened.

2020-10-15 18:47:05,349 - main.write_logs
ERROR - Something weird happened.
2020-10-15 18:47:05,350 - main.write_logs
- A normal thing happened.

2020-10-15 18:47:05,853 - main.write_logs
ERROR - Something weird happened.
2020-10-15 18:47:05,854 - main.write_logs
- A normal thing happened.

MainProcess - ERROR -

MainProcess - INFO - A

Logging Process #1 -

Logging Process #1 - INFO

Logging Process #2 -

Logging Process #2 - INFO

Logging Process #3 -

Logging Process #3 - INFO

2020-10-15 18:47:06,365 - main.write_logs - Logging Process #4 -
ERROR - Something weird happened.

2020-10-15 18:47:06,365 - main.write_logs - Logging Process #4 - INFO
- A normal thing happened.

[No filter applied
|

If we open another shell and run an update command, for example, python
update_log_levels.py error.conf, we can observe the log levels change in our
Logria stream:

2020-10-15 19:07:24,897 - main.write_logs - MainProcess - ERROR -
Something weird happened.

2020-10-15 19:07:24,915 - main.write_logs - Logging Process #1 -

ERROR - Something weird happened.

2020-10-15 19:07:25,421 - main.write_logs - Logging Process #2 -

ERROR - Something weird happened.

2020-10-15 19:07:25,932 - main.write_logs - Logging Process #3 -

ERROR - Something weird happened.

2020-10-15 19:07:26,435 - main.write_logs - Logging Process #4 -

ERROR - Something weird happened.

|No filter applied
|

Conclusion

There are several ways to use the standard library logger to work with your apps,
and this one allows you to adjust the log level details without restarting the app
across parallel processes. It will not interrupt compute processes and allows the
application run normally while dynamically providing visibility to the process.

Drawbacks

No solution is without flaw. For this one to work, we guarantee specific ports are
free. The software must wait when starting up to ensure multiple processes do not
try and connect over the same port. It increases cognitive complexity, as it adds
another set local network traffic to monitor.

Benefits

However, we are now able to remotely update the level we record without any
downtime while the server is running and even during running compute tasks.

Details and Sample Code

You can view, run, and edit the implementation in this repl, read it on GitHub here,

or download it in this zip file.

View as: PDF, Markdown

1. Weuse fileConfig() and not the newer dictConfig because later we use a
method that requires fileConfig() .

2. There are many ways to select which configuration file we use: hardcode and
manually change, use an environment variable, or write internal code to call
setLevel () onall loggers in case of an exception. More on that later.

3. Thereis no need tocall .join() inthis example because the processes are all
infinite loops.

4. There are drawbacks to this, but it is the method we are required to use.

https://repl.it/@reagentx/LoggingExample
https://github.com/ReagentX/LoggingExample/
https://github.com/ReagentX/LoggingExample/archive/main.zip
file:///Dynamic-Log-Levels-in-Python-Apps.pdf
file:///Dynamic-Log-Levels-in-Python-Apps.md
https://docs.python.org/3/library/logging.html?highlight=logging%23logging.Logger.setLevel
https://docs.python.org/3/library/logging.config.html%23configuration-file-format

