
•
•
•

•
•
•

•
•

•
•

•

Performance Testing
Methodology
Understanding

Issues Found
Issues Found
Drawing Too Often

Drawing Code
Polling Too Fast

Naive Solution
Smart Solution

Conclusions

As programmers, we can create tools to make programming easier. Often this
means building something that can be easily invoked on the command line,
whether it is a bash script or a CLI app with a full UI. This post focuses on
optimizing the latter option.

Performance Testing

To find bottlenecks in our programs, we can profile them. For this example, we will
optimize the performance of the Python edition of Logria, which is powered by
curses. According to htop , it consumes nearly 100% of the CPU when it runs, even
when idle.

Methodology

Python provides a tool called cprofile . To invoke it, we write:

python -m cProfile -s time logria/__main__.py

https://github.com/ReagentX/Logria-py
https://docs.python.org/3/library/curses.html#module-curses
https://docs.python.org/3/library/profile.html#instant-user-s-manual

This invokes cprofile on the program's entry point, __main__.py . I allowed the
app to run for about 10 seconds, then killed it with ⌃-c .

This provides us with interesting information:

 10107910 function calls (10106894 primitive calls) in 11.319
seconds

 Ordered by: internal time

 ncalls tottime percall cumtime percall
filename:lineno(function)
 4468 4.357 0.001 4.357 0.001 {built-in method
time.sleep}
 114752 1.365 0.000 4.002 0.000
color_handler.py:99(_add_line)
 770183 0.762 0.000 0.762 0.000 {method 'addstr' of
'_curses.window' objects}
 655424 0.448 0.000 0.840 0.000
color_handler.py:80(_color_str_to_color_pair)
 770176 0.412 0.000 0.412 0.000 {method 'noutrefresh'
of '_curses.window' objects}
 116765 0.370 0.000 0.370 0.000 {method 'sub' of
're.Pattern' objects}
 4465 0.310 0.000 0.310 0.000 {method 'refresh' of
'_curses.window' objects}
 884959 0.251 0.000 0.251 0.000 {method 'split' of
'str' objects}
 770176 0.248 0.000 0.248 0.000
color_handler.py:59(_get_color)
 2167 0.242 0.000 5.670 0.003
shell_output.py:125(render_text_in_output)
 19194 0.230 0.000 0.230 0.000 {method 'poll' of
'select.poll' objects}
 1311264 0.183 0.000 0.183 0.000 {method 'get' of 'dict'
objects}
 114752 0.163 0.000 4.219 0.000
color_handler.py:129(_inner_addstr)
 770176 0.152 0.000 0.152 0.000 {built-in method
_curses.getsyx}
 114752 0.123 0.000 4.378 0.000

color_handler.py:145(addstr)
 770176 0.110 0.000 0.110 0.000 {built-in method
_curses.color_pair}
 19194 0.098 0.000 0.643 0.000 connection.py:917(wait)
 116765 0.089 0.000 0.667 0.000
regex_generator.py:26(get_real_length)
 116898 0.073 0.000 0.126 0.000 re.py:289(_compile)
 116765 0.072 0.000 0.563 0.000 re.py:203(sub)
 1 0.059 0.059 11.255 11.255
shell_output.py:279(main)

Understanding

These lines are relevant to Logria. The rest are internal to Python or curses :

 ncalls tottime percall cumtime percall
filename:lineno(function)
 1 0.059 0.059 11.255 11.255
shell_output.py:279(main)
 2167 0.242 0.000 5.670 0.003
shell_output.py:125(render_text_in_output)
 114752 0.123 0.000 4.378 0.000
color_handler.py:145(addstr)
 114752 0.163 0.000 4.219 0.000
color_handler.py:129(_inner_addstr)
 114752 1.365 0.000 4.002 0.000
color_handler.py:99(_add_line)
 655424 0.448 0.000 0.840 0.000
color_handler.py:80(_color_str_to_color_pair)
 19194 0.098 0.000 0.643 0.000 connection.py:917(wait)
 116765 0.089 0.000 0.667 0.000
regex_generator.py:26(get_real_length)
 770176 0.412 0.000 0.412 0.000 {method 'noutrefresh'
of '_curses.window' objects}
 116765 0.370 0.000 0.370 0.000 {method 'sub' of
're.Pattern' objects}
 4465 0.310 0.000 0.310 0.000 {method 'refresh' of
'_curses.window' objects}

 770176 0.248 0.000 0.248 0.000
color_handler.py:59(_get_color)

Issues Found

Let’s go line by line and see what the problem might be:

 ncalls tottime percall cumtime percall
filename:lineno(function)
 1 0.059 0.059 11.255 11.255
shell_output.py:279(main)

This is the main app loop, as evinced by a single call. This function cannot be
optimized because all it does is run the app.

 ncalls tottime percall cumtime percall
filename:lineno(function)
 2167 0.242 0.000 5.670 0.003
shell_output.py:125(render_text_in_output)

The method render_text_in_output() has the highest cumulative execution
time. If this function gets called, we are guaranteed to check the message queues,
parse the messages, apply user filters and rules, and refresh the screen.

 ncalls tottime percall cumtime percall
filename:lineno(function)
 114752 0.123 0.000 4.378 0.000
color_handler.py:145(addstr)
 114752 0.163 0.000 4.219 0.000
color_handler.py:129(_inner_addstr)
 114752 1.365 0.000 4.002 0.000
color_handler.py:99(_add_line)
 655424 0.448 0.000 0.840 0.000

color_handler.py:80(_color_str_to_color_pair)

The next few lines come from color_handler , a module that handles rendering
output through curses with ASCII color codes. Since they are all direct calls to
curses , these cannot be optimized. However, the functions in this module are only
invoked when render_text_in_output() is called; if we can call
render_text_in_output() less, we will invoke color_handler functions less.

 ncalls tottime percall cumtime percall
filename:lineno(function)
 19194 0.098 0.000 0.643 0.000 connection.py:917(wait)

wait() is an internal Python function that ensures we can read from the
multiprocessing queues Logria uses to read messages. While this cannot be
optimized, checking the queues less often will reduce the number of calls to this
method.

 ncalls tottime percall cumtime percall
filename:lineno(function)
 116765 0.089 0.000 0.667 0.000
regex_generator.py:26(get_real_length)

render_text_in_output() calls get_real_length() to ensure we render the
proper amount of lines, as calling len() won’t give us the correct character count
if there are ASCII sequences embedded in the string. It uses a regex to remove
ASCII codes. While it could probably be optimized, calling it less is also a solution.

 ncalls tottime percall cumtime percall
filename:lineno(function)
 770176 0.412 0.000 0.412 0.000 {method 'noutrefresh'
of '_curses.window' objects}

This is an internal curses method. It is invoked inside
render_text_in_output() whenever we want to redraw the screen.

https://github.com/python/cpython/blob/5f18c223391eef8c7d01241b51a7b2429609dd84/Lib/multiprocessing/connection.py#L832

 ncalls tottime percall cumtime percall
filename:lineno(function)
 116765 0.370 0.000 0.370 0.000 {method 'sub' of
're.Pattern' objects}

This is from the call to get_real_length() and cannot be optimized.

 ncalls tottime percall cumtime percall
filename:lineno(function)
 4465 0.310 0.000 0.310 0.000 {method 'refresh' of
'_curses.window' objects}

This call is inside of render_text_in_output() and is required to tell curses to
render text.

 ncalls tottime percall cumtime percall
filename:lineno(function)
 770176 0.248 0.000 0.248 0.000
color_handler.py:59(_get_color)

Finally, this call checks a hashmap to ensure we choose the proper curses
color_pair() when rendering. It cannot be optimized because it is a simple O(1)
lookup that memoizes the curses method.

Issues Found

From this analysis, we can tell that we are doing two things that significantly impact
performance: drawing the UI via render_text_in_output() too much and
reading from our message queues too frequently.

https://docs.python.org/3/library/curses.html#curses.color_pair

Drawing Too Often

Every loop, the app calls render_text_in_output() to redraw the screen. If
there is no limit to how fast the app runs, we will redraw as fast as the computer
will let us, consuming all of the available CPU. To reduce this overhead, we do not
need to reduce the number of calls to render_text_in_output() . We only need
to not compute anything if there is nothing to render.

To accomplish this, we need to cache the last render to check if there is any new
content to display. We want to use a data structure that takes up little space and is
fast to compare to do this efficiently.

Logria uses lists for its message buffers, so we can store the start and end indexes
where the render occurred. For example, if the stderr list is 100 items long and
the display is 20 rows high, we render 17 rows of text. Thus, the start and end
would be (83, 100) . A tuple containing two integer indexes works well for storing
our previous render position. According to the documentation:

Sequences compare lexicographically using comparison of corresponding
elements. The built-in containers typically assume identical objects are equal
to themselves. That lets them bypass equality tests for identical objects to
improve performance and to maintain their internal invariants.

Drawing Code
To enforce this rule on the rendering logic, only a few lines of code are required.
First, we store the render state on the Logria object by declaring it:

self.previous_render: Optional[Tuple[int, int]] = None

Second, we need to check this value every call. If it did not change, we do not want
to execute the rest of the method. If it has changed, we need to update the state
and continue with the function logic.

Determine the start and end position of the render
start, end = determine_position(self, messages_pointer)

https://docs.python.org/3/reference/expressions.html#not-in

if not self.analytics_enabled and self.previous_render == (max(start,
0), end):
 return # Early escape
self.previous_render = (max(start, 0), end)

Now, Logria will make heavy render calls only if there is new content to display.

Polling Too Fast

Every loop, Logria checks multiprocessing queues for new messages to render.
These checks can be slow as we wait for the interpreters to pickle the data back
and forth, leading to a lot of wait time. We can reduce the number of calls by
implementing a poll rate in the main app loop. This also helps call
render_text_in_output() less often.

Naive Solution
Instead of running the app with a plain while True loop, we can add a delay at the
start of each loop to prevent checking the queues too often:

while True:
 time.sleep(0.01)

While this reduces app CPU usage, it means we wait longer to render messages and
makes user input feel sluggish as it has to wait to render any input.

Smart Solution
We only want to render as often as messages come into the queue or when the user
wants to input something. We can add this feature by including some new code.

First, we need to set poll rate limits: a minimum and a maximum. We do not want
the app to refresh too slowly, but we also do not want the app to consume too many
resources.

FASTEST_POLL_RATE: float = 0.0001 # Fast enough for smooth typing,

https://docs.python.org/3/library/multiprocessing.html#multiprocessing.Queue
https://chrissardegna.com/blog/multiprocessing-changes-python-3-8/

1000 hz
SLOWEST_POLL_RATE: float = 0.1 # Poll ten times per second, 10 hz

Next, we need to calculate the rate at which we receive messages:

while True:
 # Update messages from the input stream's queues, track time
 t_0 = time.perf_counter()
 new_messages: int = 0
 for stream in self.streams:
 # repeat the below logic for stdout
 while not stream.stdout.empty():
 message = stream.stdout.get()
 self.stdout_messages.append(message)
 new_messages += 1
 t_1 = time.perf_counter() - t_0
 time.sleep(max(0, self.poll_rate - t_1))
 self.handle_smart_poll_rate(t_1, new_messages)

This checks the time it takes to read the messages from the queue and subtracts
that from the poll rate so we do not delay extra time. It also calls to a new method
called handle_smart_poll_rate() .

def handle_smart_poll_rate(self, t_1: float, new_messages: int) ->
None:
 """
 Determine a reasonable poll rate based on the speed of messages
received
 """
 if self.manually_controlled_line:
 self.poll_rate = constants.FASTEST_POLL_RATE
 elif self.smart_poll_rate:
 if not self.loop_time:
 self.loop_time = time.perf_counter()
 else:
 self.loop_time = t_1 - self.loop_time
 messages_per_second = new_messages / self.loop_time
 if messages_per_second > 0:

 # Update poll rate
 new_poll_rate = \
 min(
 max(
 1 / messages_per_second,
 constants.FASTEST_POLL_RATE
),
 constants.SLOWEST_POLL_RATE
)
 self.update_poll_rate(new_poll_rate)

This method ensures a few things. First, it checks if the user is inputting
information. If that is the case, it will always use the maximum poll rate to ensure
there is no latency .

If the user is not entering commands, the app then determines the optimum poll
rate based on the time it took to read the messages and the number of messages
found. It converts these data points to a message per second metric, then clamps
that value to SLOWEST_POLL_RATE..FASTEST_POLL_RATE . This ensures that we
always check the message queues as often as there are new messages, reducing
resource usage as much as possible while also ensuring we are rendering when
new messages appear.

As the number of messages read changes, so will the poll rate at which we check
them.

Conclusions

Using tools built into Python, developers can quickly and easily determine how their
programs perform and where they are performing poorly. CLI apps that do more
than print text once benefit from making fewer heavy drawing calls. Logria required
additional optimization when polling for new data from its worker processes.
cprofile provided visibility into what method calls were taking up time and CPU,
allowing me to triage the issues and adjust each one.

1

While there are further optimizations to make, they will happen in the Rust edition
of Logria.

View as: PDF, Markdown | Discussion: Hacker News

1. The caveat of this is that it introduces a “wake up time”, i.e. if the poll rate is
close to SLOWEST_POLL_RATE then we might wait up to SLOWEST_POLL_RATE to
adjust back to the maximum. This wakeup time is a tradeoff we make for
general performance, as user input is rare, but streaming text is common.

https://github.com/ReagentX/Logria
file:///Applications/iA%20Writer.app/Contents/Resources/Templates/Sans.iatemplate/Contents/Resources/Making-Python-CLI-Apps-Faster.pdf
file:///Applications/iA%20Writer.app/Contents/Resources/Templates/Sans.iatemplate/Contents/Resources/Making-Python-CLI-Apps-Faster.md
https://news.ycombinator.com/item?id=26067316

